Syllabus

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Automation and Computer Science
1.3 Departament	Automation
1.4 Field of study	Systems Engineering
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Automation and Applied Informatics (English)
1.7 Form of education	Full time
1.8 Codul disciplinei	35.20

2. Data about the subject

2.1 Subject name		Knov	vledge-based Systems				
2.2 Course responsible/lecturer Conf.dr.ing. Rusu-Both Roxana – roxana.both@aut.utcluj.ro							
2.3 Teachers in charge of a	charge of applications Conf.dr.ing. Rusu-Both Roxana – roxana.both@aut.utcluj.ro						
2.4 Year of study	3	2.5 Semest	ter 1 2.6 Assessment (E/C/V)		2.6 Assessment (E/C/V)	E	
DF - fundamental, DD - in the field, DS - specialty, DC - complementary			DS				
2.7 Type of subject	DI – c	DI – compulsory, DO – elective, Dfac – optional					

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminar	0	Laboratory	1	Project	1
3.2 Number of hours per semester	125	of which:	course	28	Seminar	0	Laboratory	14	Project	14
3.3 Individual study										
(a) Manual, lecture material and notes, bibliography								28		
(b) Supplementary study in t	he libr	ary, online	e and in t	he fie	ld					10
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						28				
(d) Tutoring										
(e) Exams and tests								3		
(f) Other activities:										
3.4 Total hours of individual study (sum of (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2+3.4) 125										
3.6 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1 Curriculum	 Special mathematics in engineering Measurements and transducers Signals and systems Breases modeling
4.2 Competence	Sensors and transducers Elementary electrical and electronic circuits
	 Elements of linear algebra and mathematical analysis Algorithms and circuits for implementing elementary signal processing
	 methods Analog and discrete signal parameters Mathematical modeling elements

5. Requirements (where appropriate)

5.1. For the course	The lectures are interactive, using multimedia technology: blackboard, projector, computer. Going through the bibliographic materials indicated for the course. Attendance at classes is not mandatory, but is recorded by the course responsible.
5.2. For the applications	Specific equipment, computers, specific software. Attendance at the lab and project is mandatory.

Preliminary preparation of laboratories.

6. Specific competences

6.1 Professional competences	 C2 Operation with fundamental concepts from computer science, information and communication technology. C2.2 Reasoned use of concepts from informatics and computer technology in solving well-defined problems in systems engineering and in applications that require the use of hardware and software in industrial systems or in computer systems. C3 Use of automation fundamentals, modeling, simulation, process identification and analysis methods, computer-aided design techniques. C3.1 Identification of the fundamental concepts of systems theory, automatic control engineering, basic principles of modeling and simulation, as well as process analysis methods, in order to explain the basic problems in the field. C3.2 Explaining and interpreting the automation problems of some types of processes by applying the fundamentals of automation, methods of modeling, identification, simulation and analysis of processes, as well as computer-aided design techniques. C3.3 Solving some types of management problems by: using modeling methods and principles, developing simulation scenarios, applying identification and analysis methods of some processes (including technological processes) and systems.
6.2 Cross competences	

7. Course objectives

7.1 General objective	The objective of this course is to learn to effectively use data in the analysis and modeling of complex, real-world problems by understanding and mastering the elementary methods of representing, manipulating signals and describing their parameters.
7.2 Specific objectives	 Acquisition of analog and digital signals from sensors Calculation of analog and discrete signal parameters Signal processing methods Modeling techniques Validation methods and metrics

8. Contents

8.1 Lecture	No.hours	Teaching methods	Notes
Introduction to data driven system development. Application	2		
domains and examples.			
Data understanding: aquisition, exploration (statistics),	2		
visualization techiques			
Data understanding: data quality analysis, time-frequency	2		
analysis			
Data pre-processing: denoising (filtering techniques),	2		
dimensionality reduction			
Data pre-processing: detrending , interpolation of missing	2	Teaching using	
samples, outlier removal		laptop, projector and	On-site
Data pre-processing: feature extraction, feature selection	2	blackboard;	
Modeling: modeling techniques	2	Systematic exposure;	
Modeling: time-series segmentation and semantic labeling	2	debate:	
Modeling: prediction models I	2	Case Study	
Modeling: prediction models II	2	case study.	
Modeling: anomaly detection methods	2		
Modeling: models for multivariate time series	2		
Evaluation and validation: methods and metrics	2		
Evaluation and validation: model validation framework	2		

Bibliography

- 1. A.V. Oppenheim and A.S. Willsky, with S.H. Nawab, Signals and Systems, Prentice-Hall, Second Edition, 1997. (Biblioteca UTCN 3 exemplare);
- 2. E.S. Gopi. Algorithm Collections for Digital Signal Processing Applications Using Matlab, Springer, 2007, ISBN 978-1-4020-6410-4 (Biblioteca UTCN 1 exemplar);
- 3. D.S.G. POLLOCK, A Handbook of Time-Series Analysis, Signal Processing and Dynamics, Academic Press, 1999,
- 4. Bisgaard, S., & Kulahci, M, Time series analysis and forecasting by example, John Wiley & Sons., 2011
- 5. Christopher M.Bishop, Pattern Recognition And Machine Learning, Springer, 2006
- 6. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies, MIT Press, 2015
- 7. Roxana Rusu-Both et all. Sisteme bazate pe cunoaștere, note de curs, distribuite electronic

		,	
8.2 Aplications (laboratory)	No.hours	Teaching methods	Notes
Data aquisition - experimental	2		
Data understanding: descriptive statistics, visual analytics, correlation analysis, data quality check	2	Presentation of	
Data pre-processing: filtering, principal component analysis	2	examples.	Mandatory
Predictive modeling I	2	Case Study	attendance
Predictive modeling II	2	Discussions	
Anomaly detection	2	Discussions.	
Activity recognition	2]	

Bibliography

- 1. A.V. Oppenheim and A.S. Willsky, with S.H. Nawab, Signals and Systems, Prentice-Hall, Second Edition, 1997. (Biblioteca UTCN 3 exemplare);
- 2. E.S. Gopi. Algorithm Collections for Digital Signal Processing Applications Using Matlab, Springer, 2007, ISBN 978-1-4020-6410-4 (Biblioteca UTCN 1 exemplar);
- 3. D.S.G. POLLOCK, A Handbook of Time-Series Analysis, Signal Processing and Dynamics, Academic Press, 1999,
- 4. Bisgaard, S., & Kulahci, M, Time series analysis and forecasting by example, John Wiley & Sons., 2011
- 5. Christopher M.Bishop, Pattern Recognition And Machine Learning, Springer, 2006
- 6. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies, MIT Press, 2015
- 7. Roxana Rusu-Both et all. Sisteme bazate pe cunoaștere, note de laborator, distribuite electronic

8.3 Aplications (project)	No.hours	Teaching methods	Notes
Topic assignment: Experimental Setup and data aquisition	2	Presentation of	
Data analysis: vizualization, quality analysis	2		
Data preprocessing: denoising, detrending, etc.	2	examples.	Mandatawi
Data modeling	2	Practical application.	Nandatory
Data modeling	2	Case Study.	attenuance
Model evaluation	2	Discussions.	
Final Presentation/ Final Report	2]	

Bibliography

- 1. A.V. Oppenheim and A.S. Willsky, with S.H. Nawab, Signals and Systems, Prentice-Hall, Second Edition, 1997. (Biblioteca UTCN 3 exemplare);
- 2. E.S. Gopi. Algorithm Collections for Digital Signal Processing Applications Using Matlab, Springer, 2007, ISBN 978-1-4020-6410-4 (Biblioteca UTCN 1 exemplar);
- 3. D.S.G. POLLOCK, A Handbook of Time-Series Analysis, Signal Processing and Dynamics, Academic Press, 1999,
- 4. Bisgaard, S., & Kulahci, M, Time series analysis and forecasting by example, John Wiley & Sons., 2011
- 5. Christopher M.Bishop, Pattern Recognition And Machine Learning, Springer, 2006
- 6. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies, MIT Press, 2015
- 7. Roxana Rusu-Both et all. Sisteme bazate pe cunoaștere, note de laborator, distribuite electronic

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the discipline, together with the acquired skills and abilities, was discussed with other universities and important companies from Romania, Europe and the USA and corresponds to the expectations of professional organizations, companies, as well as national and international quality assurance bodies (ARACIS). It also ensures the adoption of ethical standards appropriate to engineering practice.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade		
Course	Assessment of knowledge through a test based on the knowledge gained following participation in the course	Written exam	50%		
Seminar					
Laboratory	Examination of the skills and knowledge acquired through the participation in the laboratory.	Practical assessment	25%		
Project	Project presentation	Practical presentation	25%		
Minimum standard of performance: Written exam grade > 5 and practical assessment grade > 5 and practical presentation grade > 5 N=0.6E+0.2*L+0.2P, N>5, E>5, L>5, P>5					

Date of filling in:		Title Firstname NAME	Signature
21.03.2023	Course	Assoc. Prof. eng. Roxana BOTH, PhD	
	Applications	Assoc. Prof. eng. Roxana BOTH, PhD	

Date of approval by the Department Board

Head of Departament Prof.dr.ing. Honoriu VĂLEAN

Date of approval by the Faculty Council

Dean Prof.dr.ing. Liviu Cristian MICLEA